COMP 122/L Lecture 9

Mahdi Ebrahimi

Slides adapted from Dr. Kyle Dewey

Outline

® The compare (cmp) instruction

® Cond

itionally-executed instructions

® Trans

ating simple i f statements

The compare (cmp)
Instruction

Compare (cmp)

Subtracts two given operands, discarding the result.
However, the status bits (e.g.,carry, zero,etc.) get set.

Syntax
CMP Rn, Operand?2
where:
Rn is the ARM register holding the first operand.
Operand?2 is a flexible second operand.
Operation
These instructions compare the value in a register with Operand2. They
update the condition flags on the result, but do not place the result in any
register.
The CMP instruction subtracts the value of Operand2 from the value in Rn.
This is the same as a SUBS instruction, except that the result is discarded.

ARM Flag Bits

Subtracts two given operands, discarding the result.
However, the status bits (e.g.,carry, zero,etc.) get set.

0 Condition Code Flags NZCV

= N ("Negative flag”)
m 0/1 = value 1s positive/negative
Z (“Zero tlag”)
m 0/1 = result is non-zero/zero
C (“Carry tlag™)
O 0/1 = “extends” for shift/"borrows™ for subtraction
V (“Overtlow flag™)

o 0/1 =no overtflow/overtlow caused by last arithmetic operation

Compare (cmp)

Subtracts two given operands, discarding the result.
However, the status bits (e.g.,carry, zero,etc.) get set.

mov r0, #5
cmp r0, #5

Compare (cmp)

Subtracts two given operands, discarding the result.
However, the status bits (e.g.,carry,zero,etc.) get set.

mov r0, #5
cmp r0, #5

Sets zero bit/flag
(result is zero)

Compare (cmp)

Subtracts two given operands, discarding the result.
However, the status bits (e.g.,carry,zero,etc.) get set.

mov r0, #5
cmp r0, #5

Sets zero bit/flag
(result is zero)

mov r0, #5
cmp r0, #20

Compare (cmp)

Subtracts two given operands, discarding the result.
However, the status bits (e.g.,carry,zero,etc.) get set.

mov r0, #5
cmp r0, #5

Sets zero bit/flag
(result is zero)

mov r0, #5
cmp r0, #20

Sets negative bit/flag
(result is negative)

Significance

Status bits say something about
the result of arithmetic comparisons

Significance
Status bits say something about
the result of arithmetic comparisons

mov r0, #5
cmp r0, #5

Sets zero bit/flag
(result is zero)

Significance
Status bits say something about
the result of arithmetic comparisons

mov r0, #5
cmp r0, #5

Sets zero bit/flag
(result is zero)

Operands must have been equal.

Significance
Status bits say something about
the result of arithmetic comparisons

mov r0, #5
cmp r0, #5

Sets zero bit/flag
(result is zero)

Operands must have been equal.

mov r0, #5
cmp r0, #20

Sets negative bit/flag
(result is negative)

Significance
Status bits say something about
the result of arithmetic comparisons

mov r0, #5
cmp r0, #5

Sets zero bit/flag
(result is zero)

Operands must have been equal.

mov r0, #5
cmp r0, #20

Sets negative bit/flag

(result is negative)
First operand must be <second.

Conditionally-executed
Instructions

Conditionally-Executed
Instructions

ARM allows for instructions to be conditionally executed,
depending on the values of the status bits.

Conditionally-Executed
Instructions

ARM allows for instructions to be conditionally executed,
depending on the values of the status bits.

movmi rQ, #42

Conditionally-Executed
Instructions

ARM allows for instructions to be conditionally executed,
depending on the values of the status bits.

movmi rQ, #42

move if the negative bit is set

Conditionally-Executed
Instructions

ARM allows for instructions to be conditionally executed,
depending on the values of the status bits.

movmi rQ, #42

move if the negative bit is set

movpl rl, #23

Conditionally-Executed
Instructions

ARM allows for instructions to be conditionally executed,
depending on the values of the status bits.

movmi rQ, #42

move if the negative bit is set

movpl rl, #23

move if the negative bit is not set

Conditionally-Executed
Instructions

ARM allows for instructions to be conditionally executed,
depending on the values of the status bits.

moveq r0, #42

Conditionally-Executed
Instructions

ARM allows for instructions to be conditionally executed,
depending on the values of the status bits.

moveq r0, #42

move if the zero bit is set

Conditionally-Executed
Instructions

ARM allows for instructions to be conditionally executed,
depending on the values of the status bits.

moveq r0, #42

move if the zero bit is set

movne r0, #42

Conditionally-Executed
Instructions

ARM allows for instructions to be conditionally executed,
depending on the values of the status bits.

moveq r0, #42

move if the zero bit is set

movne r0, #42
move if the zero bit is not set

Basic data processing instructions

MOV |Move a 32-bit value MOV Rd,n Rd = n

MVN |Move negated (logical NOT) 32-bit value MVN Rd,n Rd = ~n

ADD [Add two 32-bit values ADD Rd,Rn,n |Rd = Rn+n

ADC |[Add two 32-bit values and carry ADC Rd,Rn,n |(Rd = Rn+n+C

SUB |Subtract two 32-bit values SUB Rd,Rn,n |Rd = Rn-n

SBC |Subtract with carry of two 32-bit values SBC Rd,Rn,n [Rd = Rn-n+C-1

RSB |Reverse subtract of two 32-bit values RSB Rd,Rn,n |Rd = n-Rn

RSC |Reverse subtract with carry of two 32-bit values RSC Rd,Rn,n |Rd = n-Rn+C-1

AND |Bitwise AND of two 32-bit values AND Rd,Rn,n |[Rd = Rn AND n

ORR |Bitwise OR of two 32-bit values ORR Rd,Rn,n (Rd = Rn OR n

EOR |Exclusive OR of two 32-bit values EOR Rd,Rn,n ([Rd = Rn XOR n

mrc [B e B et B arc na,mn,n [5d = n 2D (50T)

CMP |Compare CMP Rd,n Rd & change flags only
CMN |[Compare Negative CMN Rd,n Rd+n & change flags only
TST |Test for a bitin a 32-bit value TST Rd,n Rd AND n, change flags
TEQ |Test for equality TEQ Rd,n Rd XOR n, change flags
MUL |Multiply two 32-bit values MUL Rd,Rm,Rs Rd = Rm*Rs

MLA |Multiple and accumulate MLA Rd,Rm,Rs,Rn |Rd = (Rm*Rs)+Rn

* Features of Conditional Execution instructions
Improves execution speed and offers high code density

Illustration:
'C Program ARM program using ARM program using
fragment branching instructions conditional instructions
if (rO==0) CMP x0,#0 CMFE r0, #0
{ BENE else ADDEQ rl,rl,#1
rl=ri+l; ADD rl,rl,#1 ADDNE r2,r2.#1
} B end
else else ADD r2,r2,#1
{ end -
r2=r2+1l;
b Instructions - 5 Instructions - 3
Memory space - 20 bytes Memory space - 12 bytes
No. of cycles -5 or 6 No. of cycles - 3

Example:
condltional execution.s

Translating simple]
statements

* Anexample: if (r2

Example |

SKIP

CMP
BEQ
ADD
SUB

r2,#10
SKIP
5. x5 2
rS. r5. 3

—>

'= 10) 5 = 5 +r2 - r3

ADDNE
SUBNE

r2,#10
D, 25, re
¥ . r5, r3

-

Example 2

== r3) && (r5 == r6)) r7

if ((rl
CMP rl, xr3
BNE SKIP
CMP rS. rb
BNE SKIP
ADD vl . Xx1.$10

SKIP

=r7 + 10

CMP rl . r3
CMPEQ r5,r6
ADDEQ r7,r7,#10

B

Translating 1 f

® Simple ifs can be translated with
conditionally-executed instructions

® Example:

® AbsoluteValue.java

® absolute value.s

